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Temperature-dependent X-ray dynamical diffraction: Darwin theory simulations
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Abstract

Thermal vibrations destroy the perfect crystalline
periodicity generally assumed by dynamical diffraction
theories. This can lead to some dif®culty in deriving the
temperature dependence of X-ray re¯ectivity from
otherwise perfect crystals. This dif®culty is overcome
here in numerical simulations based on the extended
Darwin theory, which does not require periodicity. Using
Si and Ge as model materials, it is shown how to map
the lattice vibrations derived from measured phonon
dispersion curves onto a suitable Darwin model. Good
agreement is observed with the usual Debye±Waller
behavior predicted by standard theories, except at high
temperatures for high-order re¯ections. These devia-
tions are discussed in terms of a possible breakdown of
the ergodic hypothesis for X-ray diffraction.

1. Introduction

Thermal vibrations present a peculiar problem for X-ray
dynamical diffraction: the theory is based on a crystal
with perfect periodicity, yet lattice vibrations destroy
this very periodicity. Nonetheless, various arguments
have been put forward suggesting that the Bragg
intensity temperature dependence caused by thermal
vibrations should have an exp�ÿM�T�� temperature
dependence, where M�T� is the usual Debye factor
proportional to the mean vibrational amplitude (James,
1950; Batterman & Cole, 1964). [This is in contrast to the
exp�ÿ2M� seen in kinematically diffracting crystals.]
This behavior is observed experimentally (Batterman,
1962), and there has been some theoretical justi®cation
for it (Parthasarathy, 1960; Ohtsuki, 1964). In this work,
we present numerical simulations which largely support
this conclusion but which also indicate signi®cant
deviations from Debye behavior at high temperatures
and short interplanar spacings. This raises some ques-
tions about the underlying assumptions of the Debye
picture of scattering from the time-averaged charge
distribution of the crystal.

This work is based on the Darwin theory. While most
descriptions of X-ray dynamical diffraction begin with
the von Laue picture of a crystal as a periodic dielectric
medium, the original Darwin theory computes the
re¯ectivity from a regular stack of identical atomic

planes. Darwin's derivation begins with the re¯ectivity
of a single atomic plane and, by assuming a perfect array
of these, is able to deduce an analytical expression for
what is now known as the Darwin re¯ectivity curve.
More recently, it has been shown that realistic non-
periodic structures can be simulated by simply
computing the re¯ectivity one plane at a time, a feat
made possible by modern computers. As this allows the
structure, composition and position of each plane to be
speci®ed, it has previously proved useful for dynamical
diffraction calculations on strained crystals, hetero-
structures, surface structures and even quasicrystals
(Durbin & Follis, 1995; Chung & Durbin, 1995).

2. Darwin theory with phonon modes

In our numerical simulations of X-ray re¯ectivity, we
model Si and Ge crystals consisting of 300 000 (110)
atomic planes. We use the extended Darwin theory of
dynamical X-ray diffraction, which differs from the
original (Darwin, 1914) only in that the re¯ectivity of
each plane is computed numerically and is then
employed in the Darwin recursion relations, instead of
using analytical results based on an assumed periodicity.

The Darwin model assumes that the crystal is made
up of well de®ned planes of atoms at well de®ned
positions. The instantaneous set of phonon modes in a
crystal will produce a de®nite displacement for every
atom within each plane. What we aim to show in this
section is that the re¯ectivity can be calculated by
considering separately the displacements from trans-
verse and longitudinal waves, and by taking into account
the projection of the atomic displacements in the
direction of the scattering wave vector. The fact that
X-ray diffraction is sensitive only to displacements
normal to the diffraction planes is an important
distinction between diffraction from phonons and
general phonon phenomena.

To calculate the Darwin re¯ectivity in the presence of
phonons, it is necessary to map the effect of lattice
vibrations onto an equivalent planar displacement. This
is trivial for longitudinal phonons parallel to the scat-
tering direction, i.e. in the surface normal direction ẑ.
Here each atomic plane actually does experience a
uniform displacement given by
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un�K� � aK exp�i�!t ÿ Kndÿ �K��; �1�
where n is the index plane, K and ! are the phonon wave
vector and frequency and d is the lattice constant. The
phonon amplitude is aK, and �K is an arbitrary phase
constant. This displacement is used to determine the
position of each of the atomic layers and the Darwin
algorithm is applied numerically to compute the net
re¯ectivity.

For a transverse wave traveling perpendicular to the
scattering direction, the atoms have a sinusoidal pattern
of displacements in the z direction:

un�K� � aK exp�i�!Kt ÿ K? � r? ÿ �K��: �2�
The re¯ectivity of a single plane with maximum ampli-
tude a and wave vector K can be computed numerically
by going back to Darwin's original Fresnel summation
over the scattered spherical waves arriving at the
detector from each atom (Darwin, 1914; Warren, 1990;
Durbin, 1995). The general expression for scattering by
a planar array of atoms at sites dm1m2

� m1a1 �m2a2,
where a1 and a2 are basis vectors, is

E � ÿf �re=r�Eo

P
m1;m2

expfi�k�Rm1m2
� rm1m2

� ÿ !t�g:

�3�
Here E is the amplitude at the detector a distance r from
the origin, Eo is the amplitude of the incident spherical
wave from the source at R, and re is the classical electron
radius. Rm1m2

and rm1m2
are the source and detector

distances, respectively, for the atom at dm1m2
. The two

summations become Fresnel intervals which give a ®nite
re¯ectivity for the in®nite plane.

The transverse wave gives perpendicular displace-
ments of � � a cos�K � r�, which leads to a Fresnel sum of
the form P

m1

exp�ik�C1m2
1a2

1 ÿ 2� sin ���; �4�

where � is the angle of incidence and
C1 � 1=2 sin2 ��1=R� 1=r� (Chung, 1996; Durbin, 1995).
For simplicity, we assume k and a1 are coplanar, where k
is the wave vector of the incident wave. This was
computed numerically to determine the re¯ectivity for a
single plane, from which the re¯ectivity of the entire
crystal could be calculated. These calculations led to an
interesting discovery: for a given maximum displace-
ment normal to the planes, the re¯ectivity of the crystal
was the same for a transverse wave as it was for a
longitudinal wave.

The equivalence of a parallel longitudinal phonon and
a perpendicular transverse phonon is suggested by
comparing the instantaneous distribution of atoms
about a single plane for the transverse phonon with the
instantaneous set of planar displacements from many
planes for the longitudinal phonon. These are identical,
as shown in Fig. 1, and they produce identical X-ray
re¯ectivities because one con®guration can be mapped

onto the other by translating atoms by integer multiples
of the lattice constant, which leaves the re¯ectivity
unchanged. We can thus replace all perpendicular
transverse phonons with parallel longitudinal phonons
having the same amplitude; from these the Darwin
re¯ectivity is easily calculated.

This procedure is equivalent to ignoring the correla-
tions among displacements. The scattered intensity from
a set of planes would not depend on the ordering of the
planes for kinematical diffraction (assuming that
absorption effects are negligible). In the Darwin dy-
namical theory, however, the incident intensity seen by a
given plane does depend on the distribution of planes
both above and below it, so correlations may be rele-
vant. As the wave-®eld intensities vary on the scale of
the extinction length, one would expect that correlations
which vary much faster than that length would have a
negligible impact on the overall re¯ectivity. This is
apparently the underlying reason for the above result,
that the re¯ectivity of a crystal is the same for either a
longitudinal or a transverse vibrational mode of the
same amplitude. Note that all but a tiny fraction of
phonon modes have wavelengths much smaller than the
extinction length.

Finally, we consider the case of a phonon with arbi-
trary polarization ê and wave vector K in any general
direction. The z displacement of an atom at position r on
plane n is

un�K� � aK�êK � ẑ� exp�i�!Kt ÿ K? � r?��
� exp�ÿi��K � Kkz��
� a0K exp�i�!Kt ÿ K? � r? ÿ �0K��: �5�

Note that the displacement has exactly the same form as
(2) for a perpendicular transverse phonon. In other
words, a general phonon of amplitude a, polarization êK

and frequency !K produces displacements in a single

Fig. 1. Instantaneous distributions of the displacements. (a) Long-
itudinal mode with K k ẑ showing displacements of atoms
throughout the crystal. (b) Transverse mode with K ? ẑ showing
displacements of atoms within a single plane. The two cases show
identical distributions.
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plane equivalent to a perpendicular transverse phonon
with amplitude a�êK � ẑ� and the same frequency. That in
turn leads to the same X-ray re¯ectivity as a parallel
longitudinal phonon with the same amplitude and
frequency since only displacements in the z direction
affect the diffracted amplitude. This leads to a powerful
simpli®cation: the X-ray re¯ectivity can be determined
by calculating the total displacement of each plane in the
crystal by treating every phonon as if it were a parallel
longitudinal phonon with the appropriate amplitude.

3. Computational results

To produce a realistic simulation of temperature-
dependent diffraction, we utilized standard phonon-
dispersion relations measured by inelastic neutron
diffraction to determine !K versus K (Nilsson & Nelin,
1971). To simplify the calculation, we assumed isotropic
dispersion curves, selecting the [001] data to represent
all directions in the Brillouin zone. The amplitude of
each phonon is derived by thermodynamic arguments as

ha2
Ki � 2�n�T� � 1=2�h- =Nm!K; �6�

where h- is Planck's constant, m is the atomic mass and N
is the total number of atoms in the crystal (Warren,
1990). The effect of temperature on the X-ray re¯ec-
tivity enters this calculation only through the Bose±
Einstein distribution function, n�T�, which gives the
occupation number for each phonon. (We assume
throughout that all lattice vibrations are purely
harmonic. While contributions from anharmonic effects
are crucial for many real materials, it is the intent of this
work ®rst to understand better the harmonic crystal.)

Finally, the sum over all phonon modes is simpli®ed
by dividing the Brillouin zone into 163 � 4096 discrete
cells, and representing all phonons within each cell by
the amplitude at the center of the cell. The number of
computational cells was chosen by observing that a
larger number produced no change in the results. Since
the phonons nearer the zone center have larger ampli-
tudes and hence play a greater role in affecting
diffraction, having a smaller cell size close to the zone
center proved to be computationally more ef®cient. The
®nal parameter is the phase �K for each phonon; these
were selected by a random-number generator.

A re¯ectivity calculation for a given temperature
begins by adding the displacements from all phonons to
determine the position of each of the 300 000 planes. (As
already noted, all phonons were treated as parallel
longitudinal phonons.) From this ®xed con®guration, the
re¯ectivity curves were computed for the 220, 440, 660
and 880 re¯ections. The integrated intensities of these
Darwin curves correspond to the X-ray re¯ectivity for
each re¯ection; this can then be plotted versus
temperature and compared to the Debye theory.

A physical measurement of crystal re¯ectivity must
actually correspond to some kind of an average over

atomic displacements, whereas the calculation described
so far would be the re¯ectivity from a particular ®xed
con®guration of displacements. To make this simulation
more realistic, it must sample many con®gurations of the
crystal. One approach would be to repeat it many times
with new values for the random phonon phases �K, since
each set is a new con®guration. As this proved to be
extremely demanding of computer time, we instead
performed a single calculation of the planar displace-
ments, but with a new set of random phases �K for each
of the 300 000 planes. The resultant distribution closely
matched the average of the limited number of individual
con®gurations which were computed, and the re¯ectivity
also agreed with the averages, so we conclude that this is
a fair and more ef®cient manner for con®gurational
averaging.

The ®rst task is to check whether this method is
consistent with experimental results and with standard
Debye theory over a range of temperatures. Proper
accounting of the Bose±Einstein distribution function
leads to a temperature dependence of the Debye±Waller
factor M which includes the Debye function ��TD=T�:

M � �6h2T=mkT2
D����x� � x=4��sin �=��2;

where x � TD=T and TD is the Debye temperature
(Warren, 1990). The Debye function is
��x� � �1=x� R x

0 �=�e� ÿ 1� d�. We follow conventional
practice and plot the log of the diffracted intensity
versus the product of temperature T and the dimen-
sionless function [��x� � x=4] since this yields a straight
line with the Debye theory. Fig. 2 shows a comparison of
Batterman's measurements of the Si 660 re¯ection
(Batterman, 1962), his ®t to the Debye theory and our
Darwin calculations. The agreement is excellent, espe-
cially considering that the Debye theory uses the Debye
temperature as a ®tting parameter whereas the Darwin
theory is essentially parameter-free.

Fig. 2. The log intensity versus T���x� � x=4� for the Si 660 re¯ection.
Here ��x� � �1=x� R x

0 �=�e� ÿ 1� d� and x � TD=T, where TD is the
Debye temperature. The circles denote the experimental data and
the diamonds represent the Darwin calculations. The dotted line is a
straight-line ®t from which the Debye temperature was determined.
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Next we investigated this Darwin model over a wider
range of temperatures and a range of scattering wave
vectors. Fig. 3 shows the computed Darwin re¯ectivities
for Ge 220, 440, 660 and 880 re¯ections from 5 to 900 K,
along with the Debye theory predictions. The Debye±
Waller factor was determined from the computed width
of the distribution of atomic planes at each temperature,
which proved to be Gaussian for even the highest
temperatures. Agreement between the Darwin calcula-
tion and the Debye theory is good at low temperatures
and for low-order re¯ections but the deviations become
large at high temperatures and higher orders.

Debye theory basically assumes that all X-rays see the
same crystal, i.e. that corresponding to the time-aver-
aged charge distribution of each atom. The Darwin
calculation is effectively the average of the re¯ectivities
from many different instantaneous con®gurations. We
argue below that a physical measurement is more like
the Darwin calculation than the Debye theory. The
discrepancy in Fig. 3 is therefore the ®rst indication that
a real re¯ectivity measurement may not be consistent
with the Debye average-crystal model. We note that
these deviations at higher temperatures cannot be
simply the consequence of larger displacements because
the calculations still show the Gaussian pro®le for the
distribution of planar displacements required for the
validity of the Debye±Waller factor. Correlations
between planes also cannot play any role since, as
previously noted, a new set of random phonon phases is
used in calculating the re¯ectivity of each successive
plane.

As a result of the sensitivity to larger scattering wave
vectors, we were interested in testing whether the ®nite
size of the scattering atoms might be playing a role. We
repeated the calculations without using the form-factor
corrections to the Ge atomic scattering factor, which is
equivalent to shrinking the real Ge atom down to a
point. These results, also plotted in Fig. 3, show much
weaker deviations from the Debye theory. This suggests
that atomic size might indeed play a role in the
temperature dependence of X-ray re¯ectivity.

These unexpected results raise the question of
whether some kind of transition from dynamical to
kinematic diffraction might be at work. By ®tting each
re¯ectivity calculation to I � Io exp�ÿ�M�, these results
can be replotted as � versus the relative mean atomic
displacement, hu2i1=2=dhkl, as shown in Fig. 4. Note that
standard dynamical theory assumes a constant � � 1
while kinematic theory has � � 2. Clearly the results are
not constant, and only approach unity for the lowest-
order re¯ections at low temperatures. Fig. 4 also shows �
plotted against an effective displacement u0, which
combines the atomic displacements with an atomic size,
u0 � �u2 � �u2�1=2. The data cluster about a single line
when �u � 0:25 AÊ , which can be compared to the ionic
radius of 0.53 AÊ for Ge4�. While these results are not
understood, they do cast doubt on the rigorous applic-
ability of the standard exp�ÿM� temperature depen-
dence ascribed to dynamic diffraction.

To investigate further whether these data represent a
crossover effect from dynamical to kinematic behavior,
we have extracted the minimum extinction lengths from
the calculations and compared them to the absorption
length to give an indicator of how dynamical the scat-

Fig. 3. The calculated log intensity versus T���x� � x=4� for Ge
re¯ections. [The role of the dimensionless Debye function ��x� is
noted in the text.] The solid lines represent real atoms including the
form-factor corrections for the ®nite atomic size, the dashed lines
are for point atoms (without form factors) and the dotted lines are
the predictions from the Debye±Waller factor. The Darwin
calculations show large deviations from the Debye theory at high
temperatures and for higher-order re¯ections. The deviations are
smaller for the point atoms.

Fig. 4. The values of � versus hu2i1=2=dhkl. The solid symbol used
hu02i1=2=dhkl as x values, where u02 � u2 � �u2, which adds an
effective ionic size to the vibrational amplitudes to simulate the total
charge distribution. The data tend to cluster about the dashed line
when �u � 0:25 AÊ . The dotted line is the prediction of standard
dynamical theory.
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tering is. Even at 900 K for the 880 Ge re¯ection, the
extinction length is only 0.86 times the absorption length
although � is nearly 1.8. This indicates that diffraction is
still very much in the dynamical regime, but it would be
hard to quantify how the Debye±Waller factor should
behave in the transition region between dynamical and
kinematic diffraction. The extended Darwin theory used
here would still be correct in the kinematic region as
long as the crystal can be modeled as a set of parallel
planes.

4. Deviations from Debye and the ergodic hypothesis

The Debye model assumes X-rays scatter off the time-
averaged charge distribution (Debye, 1914; Waller,
1923), while the Darwin calculations compute the
re¯ectivities of many con®gurations ®rst and then take
the average. The limit in which these two are equivalent
is described as `quasi-ergodicity' by Zachariasen (1994).
The discrepancies observed here may indicate a lack of
ergodicity in dynamical diffraction.

The central issue here is whether a physical diffrac-
tion measurement effectively samples a crystal for a time
that is long or short compared to phonon time scales, i.e.
around 10ÿ12 s. We ®rst note that the period of oscilla-
tion for a 10 keV photon is less than 10ÿ18 s, a fact that in
itself led Zachariasen to conclude that `the scattering of
X-rays represents interaction with the instantaneous
structure' (Zachariasen, 1994, p. 176). Perhaps more
relevant is the coherence time of an X-ray wave train
which follows from the uncertainty principle,
�E��t > h- . For a typical energy width of 3 eV, this
coherence time is about 10ÿ16 s. (This number is of the
same order for synchrotron X-rays monochromated by
standard Si crystals, for example, as well as for char-
acteristic Cu K� ¯uorescence X-rays.) Another char-
acteristic time scale is that for a photon traversing a
thickness of crystal encountered in diffraction, which is
of the order of 10ÿ14 s for a 10 mm extinction length. All
of these physical time scales are much shorter than the
time required for signi®cant changes in atomic dis-
placements. For this reason, we claim that a diffracted
signal of N photons corresponds to re¯ections from N
different instantaneous atomic con®gurations. Thus, a
physical measurement is more like the Darwin than the
Debye model.

Can the scattering from an instantaneous con®gura-
tion be signi®cantly different from the average crystal?
Even when a large number of phonon modes is included
in the model, the Darwin calculations show that the
average can be very different from the instantaneous. A
simple example for a single phonon shows how this is
possible. Consider a crystal made up of identical atomic
planes with interplanar spacing ao. If we choose a unit
cell of length 2ao in the direction normal to the planes,
the structure factor for the fundamental re¯ection in the
[00l] direction is F002 � 2f and F001 is identically zero (f

is the atomic scattering factor). Now consider a simple
longitudinal vibration where successive planes are
displaced by �a cos!t and ÿa cos!t, i.e. a zone-
boundary longitudinal phonon. This alternating expan-
sion and contraction of the interplanar spacing doubles
the fundamental periodicity, 2ao. A straightforward
calculation gives hF2

002i � 2f 2�1� Jo�4�a=ao�� and
hF2

001i � 2f 2
1 �1ÿ Jo�2�a=ao�� where the angle brackets

denote time averaging and Jo is the Bessel function
of zero order. On the other hand, the Fourier
transform of the time-averaged charge density yields
F2

002 � �2fJo�2�a=ao��2 and F2
001 � 0. That is, the scat-

tering from the time-averaged crystal is identically zero
for the 001 re¯ection while the average of all the
instantaneous scattering is ®nite. These results are illu-
strated in Fig. 5.

5. Conclusions

Darwin calculations of perfect-crystal re¯ectivity, which
include phonon vibrations but without assuming the
Debye average-crystal model, produce results in good
agreement with the expected exp�ÿM� behavior for
relatively low temperatures and low-order re¯ections in
Si and Ge. However, the computed re¯ectivities differ
signi®cantly from Debye values for high temperatures
and high-order re¯ections. The ®nite size of the atoms is
a notable factor in the temperature dependence. While

Fig. 5. Difference in structure factors for a single longitudinal vibration
where successive planes are displaced by �a cos!t and ÿa cos!t.
The brackets denote time averaging, and F 0 is from the Fourier
transform of the time-averaged charge distribution. The dotted line
shows the corresponding Debye±Waller factor exp�ÿ2M�. Not
shown is the structure factor for scattering from the 001 Fourier
component of the average crystal, which is identically zero (F 0 � 0);
the time average of the scatttering from the instantaneous 001
Fourier component of the crystal is non-zero for all ®nite values of
the amplitude. (Note that a maximum displacement of 0.5 is
unphysically large; the difference between the instantaneous and
the time-averaged crystal persists down to small amplitudes,
however.) The inset shows the displacements of atomic layers
(solid line) from their equilibrium positions (dotted line).
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in real crystals there are various effects, such as anhar-
monicity, which might also cause deviations from the
simple Debye model we consider here, there was
previously no reason to question the applicability of the
Debye model for dynamical diffraction in ideal systems.
An understanding of these differences could be impor-
tant for interpreting the temperature dependence of
X-ray diffraction from Si, Ge and various MBE-grown
heterostructures which diffract dynamically.
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